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seems doubtful that one will find a simple result as 
suggested in Ref. 1. 

The last condition, finally, depends on the value of #1 
and of Ji , and also on the lattice-lattice relaxation 
times which will become a factor of importance in 
paramagnetic salts at low temperatures. 

I. INTRODUCTION 

THE theory of the many-fermion system has been 
the object of intense study for many years. 

This paper is limited to a small portion of the over-all 
field, the study of the perturbation theory of the zero-
temperature "normal" state—that state in which there 
is no binding which would lead to a phenomenon such 
as superconductivity. The basic theory for the perturba
tion treatment has been developed, and is presented 
briefly in the next section as the basic tool on which 
the remainder of this investigation depends. This basic 
tool is the Brueckner-Goldstone linked-cluster expan
sion1 (BG expansion), the perturbation theoretic 
expression for the ground-state energy of the system 
described above. With the BG expansion as a basis, 
the properties of a many-fermion system are then 
analyzed and several general relations are developed. 
These have previously been derived with the framework 
of Green's function theory, but the equations developed 
here are expressed as explicit perturbation series in 
contrast to some of the original derivations. 

A "change-of-parameter" technique is then developed 
and employed to derive an approximation to the BG 

* Based in part on a thesis submitted by K. S. Masterson to the 
Faculty of the University of California, La Jolla, in partial fulfill
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expansion in terms of the true momentum densities 
instead of the Fermi step function unperturbed distribu
tion. It is shown that the above replacement, coupled 
with the neglect of the "self-energy" terms in the 
expansion, yields an approximation which is exact 
through fourth order and whose accuracy is estimated 
to be approximately ± 2 MeV for nuclear matter. This 
approximation further leads to a modified form of the 
Brueckner K matrix approximation in which the self-
consistent energy denominators are replaced by free 
kinetic energies and the Fermi distributions by the 
(self-consistent) momentum densities. An application 
to nuclear matter calculations in which the momentum 
densities are calculated to low order in perturbation 
theory, avoiding the self-consistency restriction, is 
discussed in another paper.2 

II. THE BRUECKNER-GOLDSTONE LINKED-
CLUSTER EXPANSION 

The heart of the perturbation theory of the normal 
state of zero-temperature many-fermion systems is the 
Brueckner-Goldstone linked-cluster expansion (BG 
expansion).1 It is briefly reviewed in this section because 
of its importance in the following sections and in order 
to establish notation. 

The Schrodinger equation for the system is 

(Ho+HT)y=E*= (Eo+AE)*, (2.1) 

2 K. S. Masterson, Jr. (to be published). 
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FIG. 1. Low-order diagrams of the 
BG expansion. The diagrams are to 
be interpreted as including all possible 
exchanges [as explicitly indicated for 
diagram 1(a) and 2(a)] and all 
possible positioning of various ele
ments [e.g., 3(b) can be drawn in 
four different ways, with the self-
energy inserted on the lines k, m, 
I, and n\. 
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In the equations above, and in those to follow, the 
states with which we are concerned are the momentum 
states, and the indices represent the vector quantities. 
In (2.2), €k is the energy of the single-particle state 
with momentum k, and for a spherically symmetric 
system is equal to the familiar k2/2M. The number 
operator, Hk, is the usual a,i?ah. For discrete states, the 
above summations are taken over all occupied states. 
For continuous states, they become integrals over 
occupied states, the integrals being over both magni
tudes and angles of momentum. The system usually 
discussed is the spherical Fermi sea, in which the 
unperturbed system is a sphere (in momentum space) 
in which all states whose momentum is less than or 
equal to kF in magnitude are occupied and all others 
vacant. For this case, the angular integration yields a 
constant, and the remaining integral is over all magni
tudes of k from 0 to kF. In the equations to follow we 
will use the notation for the spherical, completely 
filled unperturbed Fermi sea, so that the region of the 
summations will be indicated as, e.g., k<kF. However, 
one should bear in mind that most of the equations 
derived in the following sections apply to more general 
discrete and continuous cases (even with a discon-
tinuously filled unperturbed Fermi sea), including non-
spherical states. Dependence of the Fermi energy (or 
momentum) on the spin or iso topic spin of the particles 
in the system (as, e.g., in a system with different 
neutron and proton densities) does not alter the basic 
conclusions of the following sections either. 

The expectation value in the unperturbed ground 

state of the number operator n^—aitdh is just the Fermi 
step function 

($o ,^^o)= f ih = 1 k < kF 

= 0 k>kF. 

The Fermi momentum, kF, is determined by the 
condition 

E nk=N. 
k^.kF 

This equation indicates that each summation in our 
equations will introduce a factor proportional to N, the 
total number of particles in the system. 

The BG expansion for the ground-state wave function 
is, in the notation of Goldstone,1 

^o=lima.+oZ.L-
1 

Eo—Ho+ina 
-Hr-Hr 

1 

E0-H0+2ia 

1 

EQ—Ho+ia 
-H&o, (2.6) 

and the BG expansion for the interaction energy, 
AE(n,e), is 

AE=lima-»0 Zcf $o, 

XHr 

Hr 

1 

Eo—Ho+ina 

1 1 

-Hr 

-Hr 
EQ-Ho+i2a E0-HQ+ia x / 

(2.7) 

where Ec means summation over all connected graphs 
leading from $0 to $0, i.e., over all linked graphs with 
no external lines. In terms of the two-body interaction, 
the BG expansion is given by 

£=Lfc eknk+AE(n,e) 

kl 

(l—nm)(l—nn)nkni 
X —Vmn; W + Q&) , (2.8) 
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where 

Vkl; (kl) = Vkhkl— Vkl; Ik > 

The rules for expressing the terms of any order in the 
BG expansion (2.7) in terms of all possible connected 
graphs of that order ("linked clusters"—see Fig. 1) are 
the same as those used by most authors,1,4 with one 
exception. The restrictions on various summations to 
states above or below the Fermi sea are replaced in 
(2.8) by expressions involving the expectation values of 
the number operator, dk, which values are, in turn, 
obtained by (1) indicating explicitly the creation and 
annihilation operators associated with each v interac
tion, (2) reducing them to expectation values of the 
number operator by using the customary prescriptions 

0*a**= (1—<***<**)= (1—^*), 

and, (3) simplifying the resulting expansion through 
the use of the identities 

and 

(l-6k)n=(l-6k). (2.10) 

The BG expansion is exact for a "normal" system 
with a spherically symmetric Fermi surface and 
characterized by an isotropic interaction. In particular, 
it has been proven3 to apply in all orders in v to spin 
\ Fermions interacting through central forces. Further, 
through second order it is known to apply to tensor 
forces,2 but the proof has not yet been extended to all 
others. By a "normal" system we mean a system in 
which BCS correlations (leading to superfluidity) are 
absent. At present it appears that the BG expansion is 
applicable to nuclear matter and perhaps to zero-
temperature helium-three. Even if it turns out that the 
normal state is not the ground state for these systems, 
it is probable that it will not be far above the true 
ground state and that the calculation of its properties 
will still be of considerable interest and usefulness. 
Furthermore, most of the equations we shall derive in 
the first few sections are applicable in general to any 
Fermion system, though some of the quantities in 
these equations may be undefined for other states. For 
the normal state, however, all of these quantities can 
be completely defined in terms of functional derivatives 
of the BG expansion, and are therefore formally cal
culable from first principles. 

III. MANY-FERMION SYSTEM PROPERTIES 

In this section, fundamental formulas for the true 
momentum density and the single-particle energy are 

3W. Kohn and J. M. Luttinger, Phys. Rev. 118, 41 (1960); 
J. M. Luttinger and J. C. Ward, ibid. 118, 1417 (1960). 

4 A. Klein and R. E. Prange, Phys. Rev. 112, 994 (1958). 

developed from the Brueckner-Golds tone expansion. 
Explicit perturbation series are exhibited. Then several 
zero-temperature forms of the equations of the Landau 
theory are derived more concisely than by previous 
derivations using Green's function theory (e.g., Klein 
and Prange4 and Nozieres and Luttinger5). Many of 
the relations so developed are then used in the develop
ment of the new approximation in Sec. IV of this paper. 

A. True Momentum Density 

The expectation value of the number operator, 
1iP

:=ap*ap, is the Fermi step-function when evaluated 
between the unperturbed states, $o. When evaluated 
between the states of the interacting system, \F, it 
yields the momentum density, pp. From 

£ = L% (E* edk+v)*y(%*), (3.1) 

we then show that pp= (^r^p^)/(^9^r) is equal to 

— £ = — { [ * ( « i € 2 - • •), (E* vfo+vMeic- • • ) ] / 
8ep 8ep 

X ( * , * ) } . (3.2) 

The only dependence of the wave functions which is 
indicated above is their implicit dependence on the 
single-particle energies as, e.g., given by (2.6). To prove 
that (3.2) is ( ^ , ^ $ 0 / ( ^ , ^ 0 , we must show that the 
functional derivative on the wave functions vanishes. 
If we write that derivative as 

8 
[ (* ( • ••€*'•••)> ( £ * €*»*+«)¥(• ••€„/•••))/ 

X ( * ( - ••€,,•• •), * ( • ••€,••• • ) ) ! , ' - , (3.3) 

and, if ep> is regarded as a variational parameter, then 
the expectation value is stationary at the true wave 
function (where ep> = ep), and the above derivative 
vanishes for ep> = ep. Thus (3.2) reduces to (^rfijtfr)/ 
(s&,sfr)=pp (since v has no explicit dependence on the €*), 
and one obtains the well-known formula6: 

pp = (8/8ep)E=np+ (8/8ep)AE(n,e)=np+Anp. (3.4) 

We remark here that the momentum indices are vector 
indices, and refer to both angle and magnitude of the 
momenta. 

In (3.4) and throughout this discussion, the functional 
derivative is defined as operating on every ep which 
occurs in the expression which follows it, including 
those ep which occur under a summation (i.e., the single 
term in each sum for which the summation variable 
equals ep in the example above). 

* P. Nozieres and J. M. Luttinger, Phys. Rev. 127,1423 (1962); 
J. M. Luttinger and P. Nozieres, ibid. 127, 1431 (1962). 

• E. Daniel and S. H. Vosko, Phys. Rev. 120, 2041 (1960). 
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From the BG equation for E, (2.8), we obtain 

mn 

+ (l—np) \ ^kln Vklipn 

the difference 

Pp(n)e) = nP\ 1 —X)imn *>i>i; 

/\^mn\ (pl)~f~ ' 

nkni(\ — nn) 
X vpn.ki+ -

(ek+ei—€p—€ny 
(3.5) 

We have used a change of summation indices to 
combine terms with identical structure arising from 
(2.8), thus cancelling the factors J in that equation. 
For example, 

ni(l — » m ) ( l — nn) 
^flp 2~tlmn 1)pl;mn Vmn; (pi) 

(6p+6l—€m—en)2 

nk{\—nm){l—nn) 
mn Vkp; mn" 

(e*+€ • € w ) 

~Vmn; (kp) 

ni(l—nm)(l — nn) 
zflp 2Lslinn Vpl;mn "mn; (pi) • 

(tp+ei—em—tn)2 
(3.6) 

Similar changes of summation indices to combine terms 
are employed throughout this dissertation without 
further comment. 

The term not multiplied by np in (3.5) is the "tai l" 
of the density distribution, extending beyond the Fermi 
sphere. I t is readily verified that this equation for pp 

can be truncated at any order in v and will still satisfy 
the identity7 

UP PP^HP np=N. (3.7) 

Equation (3.5) can be inverted to yield an equation 
for ftp in terms of pp

s: 

np — pp\ l + ]L*mn Vpl; mn 
P{(1 —P»»)(l —Pn) 

- ( 1 - P , ) pn 

( € P + € j — €m—-en) 

Pkpl(l—pn) 

~Vmn; (pl)~f~ ' 

(€k+ei—ep—€n)2 

XVpn;(kl)+- (3.8) 

B. Single-Particle Energy 

The "single-particle" energy may be obtained from 
the perturbation expression for the total energy in a 
fashion analogous to that employed for the density. 
The energy of an added particle of momentum p is 

7 This identity is valid because all terms except the zero-order 
term (np) cancel upon summation over p. This can be seen in 
second order by using (3.5) for pp. 

8 The structure of this equation differs radically from (3.5) in 
third and higher orders; however, only the second-order expansion 
is required for subsequent discussions. 

(ap = E(np,e) — E(n,e), (3.9) 

where E(np.9e) means that in the expression (2.8) 
we take nk as follows: 

nk,p=l for |k |<Aip, 
= 0 for |k|>ftjF and k ^ p , (3.10) 
= 1 for |k|>&/? and k = p . 

which corresponds to the change of occupied state in 
Goldstone's paper1, and we can see from (2.8) the 
energy thus obtained is in general complex, the imag
inary part being related to the lifetime of the state. 
Similarly, the energy of an additional hole is 

o>p=E(n,e)-E(np",e), (3.11) 

with same meaning to E(np",€), where 

nk,P"=l |k|<&2? and k ^ p , 

= 0 \k\<kF and k = p , (3.12) 

= 0 | k | > * F . 

I t is apparent from the above expressions that the 
single-particle energy can be written as 

c o p = ± (Ep-E) = (8/8np)E(n,e) 

= 6p+(8/8np)AE(n,e) (3.13) 

= €P+ Aep; Aep= (8/8np)AE(n,e). 

The definition of 8/8np is similar to that of 8/8ep. I t is 
known that E(n,e) is proportional to the total number, 
N; therefore, a>p is of order unity compared to N because 
8/8np removes one summation of E(n}e). Rigorously, 
(3.13) should contain terms with the higher derivatives 
82/8np

2, 8z/8np
s, etc. However, each such derivative 

will remove one or more other summations and will 
thus introduce a factor of 1/N or smaller. Such terms 
may be discarded in the normal system (for which we 
take the limit 12—> oo, with the ratio N/Q, remaining 
constant, ft being the volume).9 From (2.8) we obtain 
the following expansion of (3.13). 

cop(€j,) = ep-\-Yli Vpit(pi)ni-{-\im 
a->0 2~tlmn "Vpl;mn 

ni{\—nm){\—nn) 
X, Vmn;(pl) 

€ p + ei— em— en-\~ia 

-lima_»o 2lkin Vki;pn-
n*»i( l — » n ) 

€k+€i—€p—en+ia 

XVpn;(kl)-\ • (3.14) 

The imaginary terms from the Brueckner-Golds tone 
expansion, (2.7), are related to the lifetimes of the hole 
and particle states. In the subsequent discussions we 
shall not exhibit the imaginary terms explicitly. We 
should remember, however, that w^ has no imaginary 
part. The original BG series for the ground-state 
energy (of the normal system) contains no poles, and 

9 This technique is used without further comment in the 
remainder of this paper, 
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since (3.14) for p=kF is just the upper or lower limit 
of one summation in the equation for the ground-state 
energy, it must also be real. 

If we define an "effective interaction" matrix U(k,l) 
such that 

AE(n,e) = § £&,z U(k,l)nkm, (3.15) 

then (3.13) becomes 

oiP=eP+T,i U(p,l)m+% £ K nkni(8/8np)U(k,l), (3.16) 

which is a restricted form of the Landau equation, with 
all the quantities in (3.15) completely specified by the 
BG expansion [which is an equation for U(k,l)2> For 
example, to second order in v, 

(1—»m)(l—»„) 
m.n Vkl; mn Vmn;(kl), (3.17) 

and (3.14) is obviously obtained when this equation is 
substituted into (3.16). The third term in the equation 
for up is the so-called "rearrangement energy."10'11 It 
represents the difference in the energy to remove a 
particle to infinity "quickly" (with no change in the 
states of the rest of the system) and the energy required 
to remove the particle adiabatically (the rest of the 
system "rearranging" itself to the ground state of the 
N—l particle system as the removed particle goes to 
infinity). If one identifies U(k,l) with Brueckner's K 
matrix, KM^M), then (3.16) is identical to the equation 
derived by Brueckner and Goldman in their analysis 
of the rearrangement energy.10 The rearrangement 
energy is sometimes cited as the reason for the failure 
of reaction-matrix calculations to satisfy the Bethe-
Hugenholtz-Van Hove theorem12 that the single-
particle energy at the Fermi surface should equal the 
mean system energy. However, the actual situation was 
that, as is well known, this theorem is not applicable to 
reaction matrix calculations because the single-particle 
energies which were used in such calculations are 
computed "off-energy-shell" when singular energy 
denominators are involved. Therefore, they are not the 
energies defined in this section (e.g., for p=pF, the 
separation energy) and need not satisfy the theorem. 
See Brueckner and Gammel13 for further discussion. 

C. Discontinuity in Momentum Density 
at the Fermi Surface 

The possibility that a Fermi surface might exist for 
zero-temperature interacting fermions was pointed out 

10 K. A. Brueckner and D. T. Goldman, Phys. Rev. 112, 994 
(1958). 

11 K. A. Brueckner, Phys. Rev. 110, 597 (1958); K. A. Brueckner 
and D. T. Goldman, ibid. 116, 424 (1959); D. J. Thouless, ibid. 
112, 906 (1958). 

12 H. A. Bethe, Phys. Rev. 103, 1353 (1956); N. M. Hugenholtz 
and L. Van Hove, Physica 24, 363 (1958). 

13 K. A. Brueckner and J. L. Gammel, Phys. Rev. 109, 1023 
(1958). Referred to as BG. This paper gives extensive references to 
previous work. 

by Migdal,14 who noticed that under some circumstances 
it could be so that the mean occupation number of 
different single-particle momentum states in the true 
ground state is discontinuous. Luttinger15 has examined 
the conditions for its existence and rederived the 
equation for the discontinuity. A calculation for the 
electron gas has been reported by Daniel and Vosko.6 

We present here still another derivation, which is based 
on the assumption that a valid perturbation expansion 
for the system energy exists. 

From expression (3.5) for the momentum density, pp, 
it is evident that pp can be separated into two parts, 
one multiplied by np and the other having no explicit 
dependence on np: 

pp==(8/dep)E(n,e) 

/ 8 \ 8f 

= np+np(8/8ep)I —AE(n,e) ) - \ AE(n,e). (3,18) 
\dfip / 8ep 

Henceforth 8'/8ep will indicate differentiation of those 
terms not multiplied by np. Thus the leading terms of 
the last two elements on the right-hand side of (3.15) are 

8/8 \ 
np—I —AE{n,e) I 

8ev \ 8nv / 

»z( l —»m)(l — »n) 
2^lmn Vpl\mn~/ " ~Vmn; (pi) 

-iLkln Vkl;t 

(ep+ei—€ 

nkm{\—nn) 

(ek+€r -eny 

en)2 

Vpn;(kl)-\-' 

and 

8f 

(3.19) 

nkni(l—nn) 
—AE(n,e) = +Y<kin vki;pn 
8ep (ek+€i—ep—en)2 

Xt>p»; < * ! )+ • • • . • (3.20) 

By using the definition of the single-particle energy 
change Aep(nye) from (3.13), we can write (3.18) as 

8' 
pp=np[l+ (8/8ep)AeP2-\ AE(n,e) 

8ep 

= np(8/8ep)o)p(ep)+(8f/8ep)AE(n,e). (3.21) 

It can be seen that 8/8ep operates not only on the 
explicit €p in o)v{ep) but also on the single term in each 
sum for which the index of summation equals p. 
Because these latter operations yield terms of order 
(1/N) (because of the removal of one sum), they may be 
neglected and the functional derivative may be replaced 
by the partial derivative, d/dep. The density is then 

14 A. B. Migdal, Zh. Eksperim. i Teor. Fiz. 32, 399 (1957) 
[English transl.: Soviet Phys.—JETP 5, 333 (1957)]. 

15 J. M. Luttinger, Phys. Rev. 119, 1153 (1960). 

file:///dfip
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given by 

Pp = np(d/dep)a>p(ep)+ (8'/8ep)AE(n,e). (3.22) 

Usually (8/8ep)o)p is denoted as Zp. Its physical 
meaning can be seen in the following way. For ep>€F, 
we have from the definition of o)p and from (3.4) 

Zp= (8/8ep)oip = (8/8ep)(Ep-E) 

= (*PA*P) - ( W ) > (3-23) 

where ^p is the state with one extra particle of momen
tum p. If we introduce the creation and annihilation 
operators, ap* and ap (fip^a^ap), and the complete 
set of unperturbed states, <£*, we obtain 

£ p = E i | ( ^ i ^ l ' - E i l ( tf /$*,*)l2 . (3.24) 

A similar equation is obtained for ep< eF* Thus Zp is the 
difference between the total probabilities of finding in 
^p and SF unperturbed states which contain a particle in 
state p. If the state p has a finite lifetime, ^tp must be 
replaced by an appropriate wave packet, and only the 
real part of Zp can be interpreted in this manner. 
Because o)kF contains no imaginary part [see below 
(3.14)], the above formulation is exact a t the Fermi 
surface. 

From (3.21) it is apparent that the discontinuity 
across ep= 6F is given by 

(8/8ep)o)p | €p=eF = Zp\e. ,~eF = N-+oo(d/dep)a (3.25) 'P I *p=eF • 

Using the formalism developed in this section, we are 
now able to cast (3.22) into a different form. If we solve 
(3.14) for ep as a function of a>Py we can write Aep of 
(3.13) in terms of cop and obtain a new function, V(a)p), 

which is numerically equal to Aep. V(wp) is the "self-
consistent" potential, since from (3.13) 

o>p=€p-\-V(oop). (3.26) 

To obtain an expression for pp, we operate on the above 
expression with d/dep, obtaining 

(d/dep)«p= 1 + (3/d€p)«p- (d/da>p)V(o>p). (3.27) 

This can be solved for d/dep(o)p): 

d 1 
(3.28) 

dep l-(d/d<ap)V(pp) 

From (3.21) we then obtain 

P P — 
l-(d/do)p)V(o)p) 

±{8'/8tp)AE{n,e). (3.29) 

The first term on the right in (3.29) corresponds to the 
density obtained by Puff and Martin16 [see also Falk 
and Wilets,17 Eq. (21)]. The smooth part in (3.29), 
which is neglected in their approximation, can be seen 
from (3.5) to be or order z>2. 

D . Effective Mass Equation 

We shall now derive the effective mass equation 
which was first obtained semiphenomenologically by 
Landau18 and later from perturbation theory by 
Luttinger and Nozieres.5 

By taking derivatives of o)p [Eqs. (3.13) and (3.14)] 
with respect to px, we get 

d 

dpx 

px d / 8 \ 
- * > „ = - + — ( — AE(»,€) ) 
x m dpx\8np / 

px d 
—+— i . 

m dpx\ 

dp, 

/ ni(l—nm)(l—nn) \ 
( iLl Vpl;(pl)nl~^'sLl™n Vpl]mn ; Vmn;(pl)^r' ' ' J 

= — h l i m A p ^ i 
m 

•Oi I iLlVp+Apx, I; (p+Apx, l)Wl~\~jL,lmn Vp+Apxthmn ; Vmn\ (p+Apx,l)l' 
£p+Apx I &l €m €n ) 

1 
- ( A ^ = 0 ) . (3.30) 

>Ap* 

We next change all the momentum variables under the summations by an amount Apxy and observe that in a 
Galilean invariant system 

Vp+Apx, 1+Apx', mr\-ApXtn+Apn ~ Vpl; mn 

and due to conservation of total momentum 

*P+Apx-{-€l+Apx— £m+Apx— €W+Ap3!
:= € p + € j — 6 m — € n + 0 ( ( A ^ a ; ) 2 ) . 

16 R. D. Puff and P. C. Martin, Bull. Am. Phys. Soc. 5, 30 (1960); R. D. Puff, Ann. Phys. (N. Y.) 13, 317 (1961). 
17 D. S. Falk and L. Wilets, Phys. Rev. 124, 1887 (1961). 
18 J. S. Langer, Phys. Rev. 120, 714 (1960). 

(3.31) 
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dp 
> — 1-limA^^oj ( 2Ll Vpl;(pl)tlU-Apx-r2-,lmnVpl;mn— Vmn;(pl)-\- ' 

m 1 \ €p\~€l Gm €n 

The second term on the right can be identified with 

ill' ' 1 Hl'Vpl;{pl)'n>lJrYil'mn Vpl;mn Vmn\ 
dlx dni'\ ep+ei—em—en 

•(A#,= 0)1 . (3.32) 
\Ap* 

) dni 8 / 5 \ 

= E r - ( — A £ ( » , € ) l . (3. 
dlxbni\bnr> / 

33) 

Since n\ is a step-function, dni/dlx is zero except at the 
Fermi surface, where its magnitude is —lx/l. Thus, 

AE(n,e). (3.34) 
d px h 52 

This equation is identical to that obtained by Landau, 
except now, by virtue of the BG expansion for AE(n,e)9 

we have an explicit expression for every term in it. 
If we take cop\\P\-kF=fP/2m* and operate with 

( 1 / ^ 2 ) Z ^ pxd/dpz on o)p, we obtain 

1 1 1 
— = Ei cos(p,l)5(/-M-
nr m 

1 

dnidrip 
-AE(n,e) 

p=kF 

m (2*-) 
kp I 

2TT)3 J 
dQjcos(p,l)(—)-

52 

•AE(n,e)\ 
p I p**kF 

(3.35) 

The quantity (—)d2E(n,e)/8tiidnp=fi;p w&s interpreted 
by Landau19 as (minus) the forward scattering ampli
tude of two particles, 1 and p, in the system. We reach 
the same identification by following the procedure by 
which we derived Eq. (3.13) for cop. 

E. Bethe-Hugenholtz-Van Hove 
Separation Energy Theorem 

With our formalism we can easily derive the Bethe-
Hugenholtz-Van Hove12 theorem which states that the 
energy of a particle on the Fermi surface is the negative 
of the energy required to remove the particle adiabat-
ically to infinity (the separation energy) and equals the 
average energy of all the particles in the system. 
Alternately, the separation energy is the negative of 
the energy the system acquires when one particle 
is added at constant volume whereas the average 
energy is the energy acquired when a single particle 
is added at constant density. A somewhat more in
volved derivation has also been given by Brueckner.11 

The proof begins with the observation that the total 

19 L. D. Landau, Zh. Eksperim. i Teor. Fiz. 30, 1058 (1956); 
32, 59 (1957); 35,97 (1958) [English transls.: Soviet Phys.—JETP 
3, 920 (1957); 5, 101 (1957); 8, 70 (1959)]. 

energy E is a function of two parameters, N and p, 
where the density p is related to the total number of 
particles, N, and to the volume, 0, by the following 
equation (neglecting spin which gives a constant): 

N 1 

O Q (2TT) 

1 rpF 

~(27r)3Jo 
dk=pF*/6T2. (3.36) 

Further, since Emis proportional to iV,1 it may be written 
as E=Nf(p) where /(p) denotes the (unknown) 
functional dependence on the density. From the 
definition of the average energy, it is easily seen that 
EAV=E/N. For a free system, the pressure, P, must be 
zero, and therefore at zero temperature 

P~(d/dp)(22/A%=0 (3.37) 

(since the average energy, E/N, is a function of density 
alone). We can then expand the derivative of E=Nf(p) 
to obtain 

(d/dN)(E)Q=f(p)+N£df(p)/dpl(dP/dN), (3.38) 

to show that the separation energy equals the negative 
of the average energy, viz.: 

d E d/E\ E 
— . (3.39) 
N 

d E d/E\ 
£,= (£)„= P H - =" 

dN N dpXN/u 
We can now apply the techniques of previous sections 

to obtain another equality involving E/N. Expanding 
(3.37), we obtain 

E d 1 d 
- (#)0+ (£)0 

N2dp Ndp 

Thus 

•p i r ) 

—Q-\ (£)a=0. (3.40) 
N* Ndp 

E/N=l/Q(d/dp)(E)a. 

Using (3.36), we can rewrite (3.41) as 

(3.41) 

E 12** d 
- = (E) 
N QpF^dpp 

2TT2 

= — £ • 
QpF* h 

dfih 5 de* 5 
_ E+ E 
.dpF htik dpF Se& 

(3.42) 
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The kinetic energy, ek, is unchanged by an infinitesimal 
increase, 77, in the magnitude of the Fermi momentum, 
but fik will increase by unity for k = pF+v if pF increases 
by rj. Therefore, dek/dpF=0 and dnk/dpF=*8(k—pF). 
Using 

& - ^ _ / * . 0.43) 

and identifying 8/8nk(E) with o)k (3.6), we obtain 

E 

N brpF 

1 f 
/ dk8(k—pF)o>k=UpF- (3.44) 

From (3.39) and (3.44), 

E/N=aiPF=-E>, (3.45) 

which proves the theorem. I t should be noted t h a t this 
derivation is strictly valid only if the single-particle 
energy, ek, is continuous a t the Fermi surface, since 
otherwise its derivative with respect to pF does no t 
vanish. 

IV. THE "CHANGE OF PARAMETER" PROCEDURE-
USE OF THE TRUE MOMENTUM DENSITY IN 

THE BRUECKNER-GOLDSTONE EXPANSION 

A. Introduction 

The Brueckner-Golds tone expansion for the interac
tion energy, AE(w,e) is a function of the unper turbed 
distribution of particles in momen tum space, nky and 
the free kinetic energies, €*. Because of the int imate 
relation between o)p and pp as given in (3.4) and (3.13), 
i t is interesting to investigate the possibility of using 
the true distribution pp instead of the "ma themat i ca l " 
np in this expansion. This substi tut ion will force us to 
change free-kinetic energies, ep, to some other energies, 
wp. I n the following we give an explicit derivation of 
the energy wp. 

First, we note the invariance of the interaction energy 
AE(n,e) under the following infinitesimal displacements 
of tik a n d €k: 

AJSI nk+\k—AE(n,e); ek-\k—AE(n,e) ) . (4.1) 
V 8€k 8nk / 

This can be expanded in a Taylor series about AE(nkyek) 
to yield 

A£K,€*)+0(\2). (4.2) 

We know from (3.4) and (3.13) that 8AE(nye)/8ek = Ank 

and 8AE(nje)/8nk= Aek. Therefore, the above relation 
shows that if we change nk by \kAnk (Xk a small quantity) 
and simultaneously change €* by — \kAek, the BG 
expansion remains unchanged up to order (X )̂2. 

The above invariance indicates that if we make the 
replacement of nk by pk [given by (3.4)] by adding up 
infinitesimal changes, the kinetic energy ek in the 
denominators should be reduced by a quantity which is 

roughly equal to Aê  in order to keep the numerical 
values of AE(nye) and AE(p,w) equal. The change in 
the kinetic energy ek will not be exactly Aek, of course, 
because the above identity holds only for infinitesimal 
X&. To determine exactly the modified free energy, wk, 
we will employ a change-of-parameter technique. 

B. The Change-of-Parameter Technique 

Given a function, f(nye)y whose functional dependence 
on the nks and eks is known [e.g., such as AE(nye) as 
given b y (2.8)] , and given another set of variables, pk, 
related to the nks in a known way, we wish to find a set 
of functions, wk, which satisfy 

/(*>*) = f(p,w)- (4.3) 

Though this equation m a y not define a unique w, the 
procedure we employ to solve for w leads to the phys
ically reasonable solution. 

JTo find w let us first introduce intermediate quanti t ies 
pk(\) and wk(\) which satisfy 

Pk(0) = nk, wk(0) = eky (4.4) 

and require the following relation to be true for ar
bi t rary X: 

/ (*M)=/ (p(X) ,w(A)) . (4-5) 
In other words, 

(d/dX)f(p(\),w(\)) = 0, 

or, using the chain rule, 

(4.6) 

/dPk(\) df(p(\),w00) 

d\ Sp*(X) 
dwk(\) 8/<p(X),w(X))' 

) - • 
(4.7) 

d\ 5wfc(A) 

Integration gives [ t̂aking (4.4) for w&(0) into account]] 

wk(X) = ek- - / d\'~ 
"x , [S / (P( \ ' )M\ ' ) ) /W\Q] d 

'o LSf(p(\')M\'))/5wk(\')2 d\' 
•P*(X'). 

(4.8) 

Now, let us give pk(\) a t X= 1 the value pk and t ry 
to find wk(l). A form of pk(\) which satisfies both pk(0) 
= nk and pk(l)=pk can be wri t ten as 

Pk(\) = nk+\(pk— nk) 

with this definition of p&(X), (4.8) becomes 

wk(\) = ek— (pk— nk) 

(4.9) 

f j [5/(p(X0^(X0)/5P,(X0] e N 

X d\' . (4.10) 
K P/(p(X0^(X0)/^(X')] 

: f M-
Jo I 

This is the desired formula for wk(k) in terms of p k ( \ ) ; 
if wk(l) — wk is found for given p / , 

/(»,€) = / ( p V ) . (4.11) 
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C. The Modified Brueckner-Goldstone Expansion 

Now, we can apply (4.10) and (4.11) to AE(n,e). 
We identify pk with the true density, pk, and wk with 
the desired energy, wk, and use (3.4) and (3.13) to obtain 
the following set of equations: 

AE(»,€) = AE(p,w), 

pk(\) = nk+\(pk—nk), 

8AE{n,t) 
wk(\) = ek-

8ek 

[ d\' 
Jo 

X-
[5AE(p(X0^(X0)/5p,(X0] 

[5AE(p(X0^(X ,))/^(X /)] 

wk=wk(l) = €k—Aek—Ank , 

(4.12) 

kf d\' 
Jo 

X 
r [5AE(p(X0,w(X0)/5P.(X0] Aef 

L[5AE(p(X,),w(X/))/tofc(X0] Ank-

The equation for wj. is obtained from that of wk(\) after 
a minor rearrangement of terms by setting X=l. In 
the last term of the wk equation, 8AE(p; w)/8pk and 
8AE(p,w)/8wk have the same structure as Aek=8AE 
X(n,e)/dnk and Ank=8AE(n,e)/8ek, respectively; the 
only differences are that n and e are replaced by p and w. 

Strictly speaking, even if we know pk} we should 
solve the complicated integral equation (4.12) to find 
wk(\). However, if we utilize AE(ptw), we find the 
following situation. Since the last term of wk, Eq. 
(4.12), is the difference between quantities with the 
same structure, it is not unreasonable to suppose it to 
be small (it turns out to be second order in v as we show 
in Appendix C, leading to a fourth order error in AE). 
Then wk~ek—Aek. From the analyses of Brueckner 
et aLn we know that a large class of the terms in the BG 
expansion can be summed if the energy is determined by 
a K matrix defined by the integral equation 

(1—nm)(l —nn) 
Kij.tki— ^ j ; « + E m n ^ij;mn Kmn;kl• (4.13) 

0>k+Q)l—C0w —C0n 

The interaction energy is then approximated by 

AE(n,e) = % T,ki Kki;(ki)nktii. (4.14) 

The self-consistent single-particle energies in the 
denominator are a consequence of the " self -energy" 
terms in the BG expansion and are approximately 
ek+Aek. Hence, wk+ (self-energy correction) will very 
nearly equal the "free" ek. Thus AE(n,e) can be approx
imated by replacing nk with the true pk and simul
taneously omitting the single-particle self-energy correc
tion. I.e., A£(p,e) with no single-particle self-energy 
processes is roughly equal to AE(^,C)BG (the BG mean

ing that the term is to be evaluated with the full BG 
expansion, including the self-energy terms). Brueckner20 

has suggested the possibility of such a substitution; 
Eq. (4.12) indicates exactly what the situation is. In 
the Appendix it is shown that the error in the energy 
resulting from this substitution is fourth order in t 
(or equivalently, in K). Brueckner and Masterson21 

(BM) have found that the fourth-order scattering 
terms are of the order of half a MeV for nuclear matter, 
and that higher order terms are successively smaller 
by a factor of about 10 (see Table IV of BM). Therefore, 
reasonably small errors would result from this substitu
tion. 

One should remark at this point that such a simplifi
cation can only occur in the evaluation of the interaction 
energy, AE(n,e); it cannot apply to E(n,t) itself. The 
total energy is approximated by 

E= Hk eknk+[AE(p,w)lno seif. •energy processes • (4.15) 

Of course, one could apply (4.10) and (4.11) to E(n,e), 
but the physical insight in E(p,w) is not as clear as in 
AE(p,w), and the defining equation of w, Eq. (4.10), 
behaves differently. Balian, Bloch, and de Dominicis22 

have examined a many-body perturbation theory in 
which n—> p throughout. Suhl and Werthamer23 have 
also reported an analogous effect to that represented by 
Eq. (4.15) occurring in the renormalization of the 
momentum space distribution function in their "second 
random-phase approximation." We shall not pursue 
either of these alternate approaches, however. 

By virtue of the close relationships between the 
parameters of the theory, it is possible to obtain 
alternate expressions for 

AE(^,e) = A£(p> / ) . (4.16) 

For instance, if we concentrate only on the single-
particle self-energy compensation after the transforma
tion, it seems better to take 

wk(\) = ek+\(a)k—ek) 

8AE(p',w') (4.17) 
w k = ek-

8Pk
f 

Then 

Pk(k) = nk—(wk—€k) 

^[5E(p(X0^(X0)/^(X0] 

Jo o [6E(p(X0,^(X,))/^(X/)] 
d\'. (4.18) 

20 K. A. Brueckner (private communication). 
21 K. A. Brueckner and K. S. Masterson, Jr., Phys. Rev. 128, 

2267 (1962). 
22 R. Balian, C. Bloch, and C. de Dominicis, Nucl. Phys. 25, 

529 (1961). 
2*H. Suhl and N. R. Werthamer, Phys. Rev. 122, 359 (1961); 

N. R. Werthamer and H. Suhl, ibid. 125, 1402 (1962). 
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To expand 

wk—€k—Aeic—Am I dXf 

Jo 

f [aASCpCxOMxoyWxO] A** 

A1243 

Rearranging terms, the latter equation becomes 

5A£(p>') &E(p>') 

8wk 8pk 

(ldAE(p(Xf)MXf))/8wk(\
f)l 

I [5A£(p(X0^(X0)/5pfc(X0] 

[8A£(p>0/W]l 

X 

£BAE(p',wr)/iPh'l 
(4.19) 

The integral in (4.19) can be expected to be small for 
the same reasons that the integral in (4.12) is small. 
Unfortunately, (4.19) does not correspond to the real 
density and it loses physical meaning. 
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APPENDIX: TRANSFORMED BRUECKNER-
GOLDSTONE EXPANSION 

In the text it is shown that A£(P,^)BG can be defined 
such that 

AE(p,w)BG=AE(n,e)BG, (Al) 

where AE(n,e)BG is the Brueckner-Goldstone linked-
cluster expansion for the interaction energy of a system 
of interacting fermions in their ground state. AE(P ,W)BG 
has the same functional form as £ ( ^ , € ) B G with the true 
densities [[given by (3.5)3 instead of the Fermi step 
functions, ny and the energy variables w in place of the 
free kinetic energies, €. In this Appendix we prove that 

l[5A£(p(X0MX0)/to*(A')] Ank 

we need 

d /dpj(\) 8 dw3{X) 8 \ 

dX \ dX 8Pj(X) dX l8w3{X)/ 

( 8 

= L/A%(——-
\8pj(X) 

[8AE<p(X),w(X))/8Pi(X)] 8 

(A5) 

[5A£(p(X),^(X))/to i(X)] 8w. - ) 
-i(X)/ 

(A6) 

from (4.10), (4.12), and (3.4). Thus, if we expand the 
integrand in (4.12) about X = 0 and integrate, we obtain 

wk=ek—Aek— A » J E 
1 

•LifA^v 

i / 5 
XAnH I I ( — 

»»-i \8fij 

w(l+ l ) ! 
{ ( 8 [8AE(n,e)/8njm~] 8 \Aek 

l8AE(n,e)/8ejm] 8eSm/Am 
(A7) 

From (3.4) and (3.13) 

8AE(n,e) 8AE(n,e) 
— A%, = Ae/. 

wk=ek—Aek+0(v2), (A2) 

where Aek is given by (3.13) and the correction by the 
last term of (4.12). Further, we shall prove that 

AE(p,e) no self energy = A E ( W , C ) B G + 0 ( ^ 4 ) . (A3) 

We shall actually show that the errors are O(^) and 
0(/4), respectively, where / is the t matrix defined by 

(1—nm)(l—nn) 
Hj;kl:= ^ij;hl\ Z^ifnn ^ij;mn ^mn;kl 

{l—nm){l—nn) 
mnrs Vij; mn Vmn; rs 

(1—»r)(l—ns) 

€k+€i— €r—€8 

(l-»*)(l-»n) 
% ; H T 2 - r . m « ®ij'tmn tmn;kl • v**^V 

€yfc+€i— €m— €n 

Now let us look at the correction term in (4.12). 
We will employ a Taylor series expansion about X=0. 

8ej 8fij 

Thus, the 1=1 term in the above correction term is 

8 Aey 8 \ Aek 

* Am 

(A8) 

/ 8 Aey 8 \ i 
—Ami Hi An A )-

\8fij An38€3/L 
(A9) 

= -i£ 
5 AtijAejc 8 

^n. £^k Aftfc 
8ftj Am 8ftj 

Ank\ . (A10) 
8 A€jAek 8 

—Ae3—Aek-\ 
8€j Ank 8e3-

To evaluate (A10), we need the following expressions 

8et 

Aek= AE(n,e) = J2 fci; <«)»!+'• • • , 
8m i 

8 (1—nm)(l—»») 
Hj;kl~ 2L*mn *mn;if~f " ~ lmn;k l 

(All) 

(€k+€i— € m — € n ) 2 

X(5W2+5n3—8kq—8iq) (A12) 

(which is obtained from (Al l ) by expanding the i 

file:///8fij
file:///8fij
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matrices and doing the differentiation), and 

ni{\—nm)(l—»„) 
t\flq'==1 flq 2-/lmn *mn;ql *mn; (ql)~T~ ' 

(eq+€l— €m— €n)
2 

nkni(\—nn) 
+ (1 — ftq)J2kln tqn\kV 

(ek+€l—€q—€n)
2 

X + • • • . (A13) 

With the above equations, we can easily verify that all 
but the last term of (A10) are of order tz and that the 
last term is 0(/2), proving (A2). 

In order to demonstrate (A3), we note that the 

equation for AE(p,e) without self-energy terms is 

AE(p,e) no self-energy terms 

= 2 HM tki;Vci)PkPi+ho\e-hole term and 

3-body cluster of 0(/3)+0(*4). (A14) 

Since the zero order pk is nk [[see (3.5)], the third-order 
terms included in (A 14) are the same as the correspond
ing terms in AE(n,e)BG. The third-order self-energy 
term must therefore be shown to come from the first 
term on the right in (A14) if the equation is to be proved 
correct to fourth order. Using pk = nk+Ank and (A13) 
for Ank, we obtain 

2 Hkl fe*;(JbJ)W&l+J iLkl hl;(kl)ftkAni-\-^ XjfcZ tkl; (H)A?^J+0(/4) 

Zlkl hl',(kl)nktll—% Ylklmn tmn;kl 
»*»l( l — » » ) ( ! —»n) 

(ek+€r •eny 
•tmn; (&*){]Ci( te (j*) + ^7; (jl) — tjm; 0 « ) " ^ n ; ( jn ) )%} • ( A 1 S ) 

A rearrangement of terms and a change of summation 
indices was required to obtain the last term. We have 
again used the fact that pk is equal to nk in lowest 
order. The last term above is just the third-order 
self-energy term in (A8), so that AE(p,e) without 

self-energy terms is indeed equal to E(n,e)BG through 
third order, proving (A3). There is a difference in 
fourth order which would lead to an error in the mean 
energy of nuclear matter estimated to be of the order 
of 2 MeV. 
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Optical Maser Action in C, N, O, S, and Br on Dissociation 
of Diatomic and Polyatomic Molecules 
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(Received 5 September 1963; revised manuscript received 28 October 1963) 

This paper reports cw optical-maser action in carbon, nitrogen, oxygen, sulfur, and bromine. The maser 
action is obtained on dissociation of various diatomic and polyatomic gases. The transitions reported here 
cover a wavelength range from 8400 to 15 000 A. The optical-maser action on the carbon lines is obtained on 
dissociation of CO or CO2 in a discharge containing CO or CO2 with either helium or neon. Maser oscillation 
in nitrogen was obtained from a discharge containing NO or N2O with helium or neon. In both the cases 
above, i.e., in the cases of carbon and nitrogen, the discharges also exhibited maser action on an atomic oxygen 
line. A discharge containing SF6 or SF6 with helium produced maser action in sulfur. And bromine +argon 
discharge yielded maser oscillation at four separate wavelengths spaced very closely around 8446 A, which 
were resolved with a 1-m Jarrell-Ash spectrometer. These four wavelengths in the Br2+Ar maser may be of 
special interest in microwave beat experiments because the separations between them are 3.92, 13.90, 3.78, 
and 21.60 kMc/sec, respectively. A detailed description of possible dissociation and excitation mechanisms 
which lead to the above masers is given. 

I. INTRODUCTION 

DURING a collision of the second kind between an 
excited atom A* and a polyatomic molecule, dis

sociation of the molecule can take place. In such a re
action, the atom^t* returns to its ground state, and the 
dissociation products may end up in their respective 
ground states or some excited levels depending upon the 
energy of the excited atom A*. In certain cases, dis
sociation of this kind leads to selective excitation 

of atoms to one particular level of the dissociation 
products. If the lifetimes are suitable, then one obtains 
optical maser action on a transition belonging to the 
spectrum of that particular dissociation product. The 
selective excitation on dissociation of a diatomic or 
polyatomic molecule requires that the discrepancy 
between the energy of the excited atom A* and that of 
the dissociation products be small. However, the energy-
coincidence requirement is not nearly as stringent as 


